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Large fluctuations for a nonlinear heat equation with 
noiset' 

William G FarisS and Giovanni Jona-LasinioO 
Institut des Hautes Etudes Scientifiques, 91440 Bures-sur-Yvette, France 

Received 22 February 1982 

Abstract. We study a nonlinear heat equation in a finite interval of space subject to a 
white noise forcing term. The equation without the forcing term exhibits several equili- 
brium configurations, two of which are stable. The solution of the complete forced equation 
is a stochastic process in space and time that has a unique stochastic equilibrium. We 
study this process in the limit of small noise, and obtain lower and upper bounds for the 
probability of large fluctuations. We then apply these estimates to calculate the transition 
probability between the stable configurations (tunnelling). This model problem can be 
interpreted as a rigorous version of some recent attempts to describe Euclidean quantum 
systems in terms of stochastic equilibrium states of a nonlinear stochastic differential 
equation in infinite dimensions. However, its significance goes beyond this situation and 
our methods may be applicable to models in other areas of natural science. 

1. Introduction 

Stochastic partial differential equations constitute a relatively new subject. There 
have been a number of interesting papers in the last few years, but the field is still in 
its infancy if compared with the highly developed theory of stochastic ordinary 
differential equations. We therefore consider it reasonable to spend a few words 
illustrating some basic motivations arising in different areas of science before introduc- 
ing the specific problem of our study. 

An example of primary importance in physics is provided by hydrodynamics. As 
is well known, the behaviour of an incompressible viscous fluid is usually described 
in terms of the Navier-Stokes equation. However, this equation is known to be 
approximate in more than one aspect. It takes into account only approximately the 
microscopic nature of a classical field. In addition quantum effects and other sources 
of fluctuations are completely ignored. It is therefore of interest to know which 
properties described by the Navier-Stokes equations survive perturbations, in par- 
ticular small stochastic perturbations which imitate some of the neglected effects. This 
latter problem is also of special importance in connection with modern theories of 
turbulence, where one would like to determine physically interesting measures 
invariant under the flow generated by the Navier-Stokes equations and stable under 
small perturbations. 
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A vast class of evolution equations, which according to the usual terminology of 
partial differential equations may be classified as semilinear parabolic equations, arises 
in the phenomenological approach to such different phenomena as the diffusion of a 
fluid in a porous medium, transport in a semiconductor, coupled chemical reactions 
with possibility of spatial diffusion, and population genetics (Henry 1981). In all these 
cases, due to the phenomenological approximate character of the equations, it is again 
of interest to test how the description changes under the effect of stochastic per- 
turbation. 

More recently, mathematical developments in statistical mechanics, quantum 
mechanics and quantum field theory seem to lead in various ways to the study of 
stochastic differential equations and more generally of a calculus in infinitely many 
dimensions. In this connection, let us mention two specific ways in which infinite- 
dimensional stochastic differential equations arise. If one tries to extend to field theory 
the so-called method of stochastic quantisation, one is confronted with the problem 
of defining diffusions in Hilbert spaces. This aspect is reflected for example in the 
approach to field theory developed by Albeverio and Hoegh-Krohn (1977). Also 
some recent work on the quantisation of Yang-Mills fields (Asorey and Mitter 1981) 
involves stochastic differential equations in Hilbert space. There is however a different 
path to infinite-dimensional diffusions which in recent years has attracted the attention 
of people working in both statistical mechanics (Holley and Stroock 1976a, b) and 
quantum field theory (Parisi and Wu 1981). This is based on the following remark. 
Suppose we have to study an equilibrium situation described by a formal density 
proportional to 

expi- ( ~ / E ’ ) s ( u ) ] ,  (1.1) 
where S ( u )  is a functional of the u ( x )  which are field variables, functions or distributions 
defined on n-dimensional space. We can imagine that the equilibrium is the result 
over long times of the, so far formal, diffusion process 

aU(x, t ) / a t  = -SS(u)/Su(x, t ) +  &a(& t ) ,  (1.2) 
where a(x,  t )  is a white noise with ( n  + 1)-dimensional parameter. Of course, the 
problem of giving a precise meaning to equation (1.2) is a non-trivial one, and a 
general theory of infinite-dimensional diffusion has so far been developed only under 
certain restrictive hypotheses (Faris 1979, 1980, Marcus 1974, 1978, 1979, Belopol- 
skaia and Daletzki 1978, Kozlov 1978, Doss and Royer 1978, Royer 1979). Even 
within these limits, however, it is possible to gain insight into some interesting examples. 

Broadly speaking, the present work fits into the latter scheme. However, the model 
we shall discuss has an independent interest, and it proves to be an excellent laboratory 
for the development of new techniques. The mathematical goal of our paper is in 
fact the generalisation to an infinite-dimensional situation of the well known theory 
of small random perturbations developed by Ventsel’ and Freidlin (1970, 1979). This 
theory has already been useful in treating tunnelling phenomena from the standpoint 
of stochastic mechanics (Jona-Lasinio et a1 1981). 

The model we shall discuss is directly inspired by the quantum mechanical double 
well anharmonic oscillator. The field variables U are functions defined on a one- 
dimensional interval [0, L]. The functional S ( u )  appearing in (1.2), and which from 
now on will be referred to as the equilibrium action functional, is 

JO 
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with 

V ( U )  = (A/4)u4 - (p/2)u2, (1.4) 
where A > 0 and p > 0 are fixed parameters. The reason for this choice of V is that 
it is the simplest even polynomial that is not quadratic. The signs are chosen so as 
to ensure two distinct minima. Equation (1.2) becomes 

au/at = a2u/ax2- V ( U )  + E L Y ,  (1.5) 

where LY is a white noise in two dimensions. This means that a is a random Gaussian 
distribution with zero mean and covariance 

E(LY(x ,  t ) a ( x ' ,  t ' ) ) = S ( x - x ' ) S ( t - t ) ,  (1.6) 
where E denotes the expectation. In this paper [0, L] will be a fixed interval and we 
shall assume that our functions U (x, t )  satisfy Dirichlet boundary conditions 

(1.7) 

That is, if au/ax is not in L2 or if u does not satisfy the Dirichlet boundary conditions, 
then S ( u )  = +CO. The reason for the restriction to a finite interval is that a theory of 
large fluctuations for equation (1.5) can be developed along similar lines as in the 
finite-dimensional case. The situation where the interval [O,L] is replaced by the 
whole real line requires additional consideration. Of course it is only in the latter 
case that the full quantum mechanical situation is recovered in equilibrium. However, 
one may also think of the equation (1.5) as describing the motion of an elastic string 
in a high-viscosity noisy environment. This interpretation is actually a useful reference 
for intuition. 

The picture that emerges from our analysis is the following. For sufficiently large 
values of ,U '"L, the deterministic string defined by (1.5) for E = 0 will have two stable 
equilibrium positions f u l  corresponding to the two minima of the potential V ( u )  at 
u = f ( , u / A ) " ~ .  These are depicted in figure 1. They are the absolute minima of the 
equilibrium action S(u) .  There are also a certain number (depending on the value of 
p "'L) of instanton-like or multi-instanton-like unstable equilibria. Figure 2 shows 
one of these, corresponding to one instanton. All of these solutions are critical points 
of the equilibrium action S(u) .  The instanton or multi-instanton solutions are saddle 
points. 

When the noise ELY is introduced the string will most likely perform small fluctu- 
ations near the stable configurations, but from time to time a particularly lucky 

u(0 ,  t )  = u(L, t )  = 0. 

Figure 1. The stable configurations. Figure 2. An instanton-like solution. 
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fluctuation will take it from one stable position to the other. We may call this event 
a tunnelling. The probability of tunnelling in a fixed large time interval will be very 
small, and its rough magnitude will be independent of the length of the interval. We 
shall show that this magnitude is of the order of 

expi- ( 2 / m ( u Z )  - S(udl1, (1.8) 

where u2 is the instanton-like solution (figure 2), and u1 is a stable equilibrium solution. 
We must emphasise that this picture is strictly connected with the circumstance that 
the space interval [0, L] is finite. 

We now give an outline of our strategy. The standard way to approach an equation 
like (1.5) is to convert it into an integral equation using the solution of the linear part. 
In our case this is just the heat equation. Let g(x, y ,  t )  be the kernel of the integral 
operator that solves the initial value problem for the heat equation with Dirichlet 
boundary conditions (1.7) on [O,L]. Let u0 be the initial value and let guo be the 
solution. Thus 

The operator G that gives the solution of the inhomogeneous heat equation with zero 
initial condition is then 

(1.10) 

where 8 is the indicator function of [0, CO). The method is to compare the process U 

of interest with the process w satisfying 

(alar  -a2/ax2)w = (Y (1.11) 

and zero initial conditions. This linear equation has the solution 
w = G a  11.12) 

and so w is a zero-mean Gaussian process. The integral equation satisfied by u is then 

U = - G V ' ( U ) + E W  fguo. 

The w that occurs in this equation is still random, but now it has a continuous covariance 

E(w(x ,  t ) w ( x ' ,  t ' ) ) =  (1.14) 

where G* is the adjoint operator of G. 
The existence and uniqueness of global solutions of (1,13), continuous with proba- 

bility one, follows from an adaptation of the work of Marcus (1978). (Similar results 
are contained in work of Kozlov (1978).) The ergodicity of the process and the 
existence of a unique equilibrium measure (1.1) also follow. 

The theory of large fluctuations is then constructed as follows. Ventsel' and Freidlin 
(1979) have developed a theory of large fluctuations for Gaussian processes with 

T L  

G ( x ,  t, y ,  s)G(x',  t ' ,  y, s)dy ds = GG*(x, t, x ' ,  r ' ) ,  
0 0  
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values in Hilbert spaces. This has subsequently been cast in a more general form 
suitable for Gaussian processes with values in a Banach space in work of Azencott 
(1980). These results apply to the Gaussian process w. Define a functional IO of the 
sample paths by 

T L  

I o ( w )  =$ I [(a/at-a’/ax’)w]’ dx df. 
0 0  

(1.15) 

If A is a Borel set in the space of continuous functions w satisfying the Dirichlet 
boundary conditions and vanishing at t = 0, we define 

Io(A)= inf Io(w). (1.16) 
w c A  

It is plausible that this functional should play a role in the large fluctuation theory of 
the Gaussian process w, since it involves the inverse (a /af  -a’/ax’)*(a/af - a’/ax’) of 
the covariance operator GG*. 

There is also a large fluctuation theory for the full nonlinear process U. This 
involves a functional I that will be called the action functional of the process (not to 
be confused with the equilibrium action functional S). Let 

I ( u ) = $ ~ ~ ~ L [ a u / a i - a ’ u / a x 2 +  0 0  V’(u)]’dx df. (1.17) 

If A is a Borel set in the space of continuous functions U satisfying Dirichlet boundary 
conditions and an initial cqndition u(x, 0) = uo(x), then we may also define 

I (A)=  inf I(u) .  (1.18) 
u e A  

The Ventse1’-Freidlin estimates for the process come in two parts, a lower bound 
for the probability of an open set, and an upper bound for the probability of a closed 
set. This pattern is equivalent to that in the large fluctuation results of Varadhan 
(1966). The first estimate states that if A is open, then 

-I(A)sliminf E’ logPE(u EA).  (1.19) 
C + o  

The second states that if A’ is closed, then 

limsup ~ ~ l o g ~ ‘ ( u  E A ) ~ - I ( A ) .  (1.20) 
E -0 

In these formulae PE is the probability when U is determined with noise parameter E. 

The proof of these estimates is in two steps. First the corresponding result is 
proved for the Gaussian process E w and the functional Io, as mentioned above. Then 
one uses the observation of Ventsel’ and Freidlin (1979) that such asymptotic results 
are preserved under continuous mappings. We establish that the transformation 
mapping the trajectory E W  into the solution U of (1.13) is continuous in the sup norm. 
The estimates (1.19) and (1.20) for the non-Gaussian process follow immediately. 
These general large fluctuation results are summarised in § 6. 

When A is a closed set, then there is a minimising trajectory U with I(u) = I(& 
but it may be very difficult to compute explicitly. However, in order to compute the 
probability of tunnelling we need only a special form of the event A ;  it should be a 
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transition from the initial uo to some open set Y in some fixed time T. Thus we take 

A = ( U : U ( * , ~ ) = U ~ , U ( * ,  T)E  Y}, (1.21) 

where the Dirichlet boundary conditions are understood. Then A is a transition from 
u0 to the closed set at time T, and we may use A and A in the two Ventse1’-Freidlin 
estimates. 

For the transition to be a tunnelling from - u l  to u l ,  we need to take the initial 
uo to lie in a small neighbourhood N of - u l  and the final U( U ,  T) to lie in a small 
neighbourhood Y of u l .  Notice that these are uniform neighbourhoods and so there 
is nothing to ensure that the equilibrium action S ( U )  will be finite for u in these 
neighbourhoods. It is thus remarkable that there are bounds in terms of the change 

A S = S ( U ~ ) - S ( U ~ )  (1.22) 

in the equilibrium action between the stable u 1  and the one-instanton state u 2 .  
The estimates needed to apply the lower and upper bounds on the probability are 

upper and lower bounds on the functional. The upper bound on the functional states 
that there is a neighbourhood N of - u l  so that for every 5 > 0, there is a T < 00 so that 

(1 -23) 

This bound is proved in 8 9 by computing I ( u )  with a suitable trial function u in A .  
The lower bound states that there is a neighbourhood Y of u 1  so that for every 5 > 0 
and every compact set K of initial conditions, there is a neighbourhood N of - u l  
such that if uo is in K n N, then 

I ( A )  G 2AS + 5. 

(1.24) 

This bound is more difficult, since in order to get a lower bound on I (A) ,  we need to 
get a lower bound on I ( u )  for all U in A, that is, for all conceivable tunnelling 
trajectories. This requires a topological argument that involves the critical point 
structure of the equilibrium action S .  This is a point where the infinite-dimensional 
theory exhibits new difficulties, since S is not continuous on the space of continuous 
functions with the uniform norm. These difficulties are resolved in 8 10. 

We may summarise our results in a theorem. Let A ( u o ,  Y;T) be the transition 
from uo to Y in time T given in (1.21). Let P‘(A(uo,  Y;T)) be the probability of 
this event when the noise parameter is E # 0. We wish to estimate the probability of 
a tunnelling from uo near - u l  to a neighbourhood Y of u l .  Here f i l l  are the two 
ground states. The theorem gives bounds on this probability in terms of AS = 
S(f~2)-S( f  u l ) ,  the difference of the equilibrium action between the one-instanton 
states f u 2  and the ground states f u l .  

Theorem 1.1. There is a neighbourhood Y of u1  such that for every [ > O  and every 
compact set K of continuous functions, there is a neighbourhood N of - u l  and a 
time T, such that for all uo in K fi N and all E sufficiently small 

exp[- ( 1 / ~ ’ ) ( 2 M  + i j ] s P ‘ [ A ( u o ,  Y;T)]< exp[ - (1/&’)(2AS - 511. (1.25) 

This result suggests the picture that in the limit of small noise, tunnelling takes place 
through an instanton configuration. 
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2. The Gaussian process 

In this section we derive some properties of the Gaussian process w defined by the 
equations (1.6) for the white noise a and the equations (1.11) and (1.12) expressing 
w in terms of a. Since the white noise is a random distribution, the equation (1.6) 
really means that 

(2.1) 

where (f, g )  = j ; f ( x ,  t )g(x ,  t )  dx dt is the L2 inner product of two test functions f and 
g. Similarly, the equation (1.12) means that 

(2.2) 

E(a (fb (g)) = (f, g), 

(w, f )  = (a, G * f )  

G = (a/at -a2/ax2)-’, (2.3) 

for every test function f. Here 

where the operator a2/ax2 is defined with Dirichlet boundary conditions at x = 0 and 
x = L, and the a/at is defined with the boundary condition that functions in its domain 
vanish when t = 0. The operator d2/ax2 is self-adjoint, but the a l a ?  is not. In fact 
(a/%)* is - a / d t  with the boundary condition that functions in its domain vanish at 
the other end point t = T. The operator G is given explicitly by (1.10) as an integral 
operator. We shall see below that Tr(GG*) <a, so G is actually Hilbert-Schmidt. 

(2.4) 

It follows from (2.1) and (2.2) that 

E ( w ( f ) w ( g ) )  = (G*f,  G*g) = (f, GG*g). 
Thus the covariance of w is the operator 

r = GG*, (2.5) 
where G* is the adjoint of G. In other words, we have 

EWX,  MY, SI) = w, t, Y ,  s), (2.6) 
where 

T L  

T ( x ,  t, y, s) = I I G(x, t, x ‘ ,  t’)G(y, s, x ’ ,  t’) dx’ dt’. (2.7) 
0 0  

If we write this as an operator valued function of t and s, we obtain 
T 

Ut, s) = jo exp[(t - t ’ )a2 /ax2 ]e( t -  f’) exp[(s - t’)a’/ax’]e(s - t’) dt’ 

= joTexp[(t+s -2 t ’ )a2 /ax2 ] le ( t - t ‘ )8 (s - t ’ )  dt‘ 

min(s.t) 

= jo exp[(t + s - 2t’)a2/ax21 dt’ 

= -4(a2/a~2)-’{e~p(lt-sla2/a~2)-e~p[(t+s)a2/a~2]} 

At this point we may introduce the eigenfunction expansion of -a2/ax2, which is 
determined by 

( -  az/ax2Mn = pnbnr (2.9) 
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where pn = n2.rr2/L2 and 4"(x) = (2/L)"2sin(n.rrx/L). It follows that 

r(x, t ,  Y ,  s) = t C (l/cLfl)[exp( - It - s I P J  - exp( - ( t  + s ) c ~ ~ ) l d ~  ( x ) ~  (Y  1. (2.10) 

The series obviously converges absolutely, so r is a continuous function. It also follows 
that the operator r is trace class. 

n 

Lemma 2.1. The covariance r is Holder continuous with exponent 4. 
Proof. It issufficient to check Holder continuity in each variable separately. We begin 
with the t variable. It is clearly sufficient to prove that C, (l/kn) exp(-Tpn)4,(x)4,(y) 
is Holder continuous in T for T 2 0. But 

12.1 1) 

The magnitude of this is bounded by 

johIom exp[ - (T + a)f2.rr2/L2] df d a  = C (T  + d a  Ioh 
= 2C[(t + h)l'* - T " 2 ] s 2 c h  1'2, (2.12) 

The remaining point is Holder continuity in x. This follows from the Holder 
This is clearly Holder continuous with exponent i, even at T = 0. 

continuity of the eigenfunction 

l # n ( X + h ) - 4 n ( x ) l ~ C ( n h ) "  (2.13) 

for a s 1. We use this to estimate the difference in the covariance between x + h and 
x. We obtain a series 

(2.141 

which is convergent for a < 1. This shows that the exponent may be taken to be any 
a < I ,  in particular, (Y = i. 

The continuity of the covariance r implies the mean continuity of the process. In 
fact 

~ ( [ ~ ( ~ , r ) - ~ ( y , s ) i ~ ) = [ r ( x , t , ~ ,  t ) - r ( x ,  t ,  Y,S)] - [~(X,  t, Y , s ) - ~ ( Y , s ,  Y,S)I .  (2.15) 

It is a more subtle fact that for a Gaussian process, Holder continuity implies pointwise 
continuity of the process. In fact, more is true, Holder continuity of the covariance 
with exponent a implies pointwise Holder continuity of the process with exponent a' 
for every a'< a/2 .  These are standard facts and may be found for instance in Fernique 
(1975) or in Colella and Lanford (1973). Thus we have the following result for our 
Gaussian process. 
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Corollary 2.2. The random functions w are Holder continuous with exponent a' <a, 
with probability one. 

Another thing to note is that the variance r(x, t, x ,  t )  of w(x ,  t )  vanishes when 
x = 0, L and when t = 0. This means that w(x ,  t )  is equal to its mean value when 
x = 0, L and when t = 0, with probability one. This mean value is zero, so this proves 
the following result. 

Proposition 2.3. The random functions w satisfy the boundary conditions w (0, t )  = 0, 
w(L, t )  = 0, and w(x ,  0) = 0, with probability one. 

The asymptotic behaviour of the process w may be read off the covariance (2.8). 
As t and s approach infinity, the result is a covariance in which only the first term 
appears. If we then sets = t we see that the asymptotic space covariance is -k(d2/ax2)-'. 
Thus the stationary distribution is Gaussian with mean zero and this covariance. It 
is straightforward to see that this covariance is Holder continuous with exponent 
a < 1. It follows as before that the sample path of a random function of x in the 
stationary distribution is Holder continuous with exponent a' < 4, with probability one. 

The inverse of the covariance plays an important role in large fluctuation theory. 
In the present case this is 

(2.16) 

This may also be written r-' = ( -a2/at2 + a4/ax4), but this form does not make the 
boundary conditions explicit. However, from the factored form (2.16) we see that 
any f in the domain of r-' must satisfy f= 0 at t = 0 and at x = 0, x = L and the 
additional boundary condition 

r-'= ~ - l * ~ - l -  - @/at  - a2/ax2)*(a/at - a2/ax2). 

@/at  - a2/ax2)f = 0 at t = T and at x = 0, x = L. 

This additional boundary condition is what is called a free boundary condition. 
The reason for this terminology is that with this condition the kernel r(x, t, y, s) for 
s s T, t s T is independent of the value of T. 

The inverse of the covariance r-' = G-'*G-' determines a quadratic form defined 
on vectorsf with values (IG-'f(f. It is actually this quadratic form that is most important 
for us. Notice that we have 

llG-'fIl2 = ll(a/at - a2/ax2)fll2 = llaf/at1I2 + lla2f/ax 2 1 1 2  + Ilaf(T)/ax 112 
where the last inner product is with respect to the space variables alone. 

(2.17) 

3. Ventse1'-Freidlin estimates for the Gaussian process 

In this section we prove large fluctuation estimates for the Gaussian process w satisfying 
(1.11). Such estimates are known in a general Banach space setting (Azencott 1980), 
but we believe that it is helpful to give an elementary proof. Our method is to follow 
the arguments of Ventsel' and Freidlin (1979), with necessary modifications. 

There are two estimates to be proved. The first is a lower bound for the probability 
that E W  lies in an open set. The second is an upper bound for the probability that 
E W  lies in a closed set. In this section we prove such estimates for special types of 
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open and closed sets. In the following section we show that these special cases imply 
the general case. 

We define the action functional 

l o ( f )  = $116 - ' f l 1 2  = i l l ( d / d t  - d2/ax2)fl12, (3.1) 

where the norm is the L2 norm on functions of space and time. The convention is that 
1,cf) = +cc for allf that do not satisfy the boundary conditions at x = 0, x = L, and at t = 0. 
The open set will be a ball in the uniform norm I I * / l m .  Both norms occur in the following 
proposition. 

Proposition 3.1. Fix S > 0. For every ('> 0 and for every sufficiently small E > 0 

P(IIEW - f I / m < S )  L ~ x P I - ( ~ / E ~ ) [ ~ ~ ( ~ ) + ~ I } .  (3.2) 

Proof. Let z = EM:  - f. If I c f )  = $/lG--'fl12 < CO, then the measure induced on function 
space by z is absolutely continuous with respect to that induced by EW.  The relative 
density is given by 

dpJdp,, = exp{-[1/(2E2)][2(G-lcw, G-'f)+(G-'f, G-'f)]} 

= exp[-(1/E)(a, G-'f)l exp[-(1/~~)10Cf)l .  (3.3) 
Thus 

P( I IEW -film < 6) = P(llzllm < 8) 

= E{exp[- ( 1 / ~ ) ( a ,  G - ' f ) l 1 ! 1 ~ ~ 1 1 ~ 4  exp[- ( 1 / ~ ~ ) 1 0 ( f ) l .  (3.4) 
The expectation may be written as a conditional expectation and estimated by Jensen's 
inequality: 

E { ~ X P [  - ( 1 / E  )(a, G - 'f)lI / I&  w /I= < 6 V ' l l E  w Ilm < 6 1 
a e x p [ - ( l / ~ ) E ( ( a ,  G- ' f ) l i l~w l lm<S) lP( I I~wI Im<S) .  (3.5) 

However, the conditional expectation in the exponential is zero by symmetry. Thus 
we have 

P ( J I E M '  - ~ ~ J , < S ) ~ P ! I I E W I J ~ < S )  ~ X ~ [ - - ( I / E ~ U ~ C ~ ) ] .  (3.6) 

Furthermore P ( I I E w ~ ~ ~  < S) + 1 as E + 0, so this is the required lower bound. 

Proposition 3.2. Let 1; = {f: low) s s}. Fix S > 0. For every (' > 0 and every sufficiently 
small E > 0 

P[dist(sw, I ~ ) ~ S S ] ~ e x p [ - ( l / ~ ~ ) [ ~ - 5 1 1 .  (3.7) 

Proof. We introduce an approximation by using eigenfunctions f,, of the covariance 
with 

rfn = Y,,.ffl. (3.8) 
(w, f , ) f , ,  and GAT = w - wN. The coefficients (w, fn) are independent 

The event whose probability we want to compute occurs in conjunction either 

Set \ttN = 
Gaussian random variables with variance Y,,. 

with I I E G ~ ~ ~ ~ ~  2 8  or I / E G ~ ~ / ~  < S .  Thus 

P[dist(Ew, 1') 3 8 1  ~ P ( / I & ~ ~ l / m L S ) + P ( & W N ~ E ' ) .  (3.9) 
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We estimate each of these terms. The variance of r i ’ ~  is 
m 

n = N + 1  
F N b ,  t, x ,  t )  = c mIffl(x, t v .  (3.10) 

The f N ( x ,  r, x ,  t )  are continuous and converge monotonely to zero, so they converge 
uniformly on the compact set [0, L ]  x [0, TI. 

According to a theorem of Fernique (1975, theoreme 1.3.3) for Gaussian processes, 

~{exp[ I I r t~ I l~ / (2a~) I}<  00 (3.11) 

for every a with U’   SUP^,^ F N ( x ,  t, x ,  t ) .  Thus we may estimate 

P(IIrtNJlm as/&) s exp[ - s ’ / ( 2 a ’ ~ ~ ) ] E [ e x p ( ~ ~ ~ ~ ~ ~ ~ / 2 u ’ ) ] .  (3.12) 

Pick a so small that S’ / (2a2)>s .  Pick N so large that the expectation in (3.11) is 
finite. This gives an estimate 

(3.13) P ( I I E ~ ~ ~ J ~ ~  a S) s Cexp(-s/E2). 

Thus the first term gives no trouble. 
The other term is the one that carries the essential information. We have 

N 
I ~ ( w ~ ) = ~ ( J G - ~ w ~ ~ ~ ~ = ~ ( w ~ , ~ - ~ w ~ ) = ~  1 rnl (wfl,ffl)’=&/2 

fl=l 

where the  random variable is the sum of squares of N normalised Gaussian random 
variables. Clearly 

~ [ e x p ( t x i / 2 ) 1  < 00 (3.14) 

for every t < 1. Hence 

P ( & w N E  1;) = P [ I O ( & W N )  > s]=P[IO(wN) >s/&’]=P(X,$> 2s/&’) 

G exp(-ts/&’)~[exp(txit/2)1. (3.15) 

We may take t = 1 - 5/(2s). The multiplicative constants are independent of E and 
may be taken care of by the other 5/2. This proves the proposition. 

4. Properties of the action functional 

In this section we prove some lower semicontinuity and compactness properties of 
the action functional Io for the Gaussian process w.  These are used to give a somewhat 
stronger version of the Ventse1’-Freidlin estimates for this process. The Banach space 
of sample functions will be taken to be CDo([O, L] x [0, TI), the space of continuous 
functions on [0, L] x [0, TI satisfying the Dirichlet boundary conditions (1.7) and the 
zero initial condition at t = 0. 

Proposition 4.1. The action functional IOU) = 3ll(a/at - a2/ax2)f/1’ is lower semi- 
continuous on CDo([O, L ]  x [0,  TI). 

Proof, Let f ,  +f in CDo. We wish to show that IOU) s lim infflIoCffl). We may as well 
assume that the right-hand side is finite, and by passing to a subsequence we may 
even assume that the IOU) = lim, IOU,). 
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For each fn there is a corresponding h, in L 2  with f, = Ghn, and the l o c f , )  = $llhnl12 
are bounded by a constant. Thus there is a subsequence h, of the h, that converges 
weakly to some h. It follows that fm = Gh, converges weakly to Gh. This shows that 
f = Gh. 

Since 2(h,, h )  s (/h,1/2 + llh/I2, we have IJhJ12 s l imm~~hm//2 .  This may be restated as 
IOU) s limn IOUn), and this is the desired conclusion. 

Proposition 4.2. For every c <CO, the set If, = (f: I o ( f )  s c} is compact in CD0([0, L ]  X 

[O, TI). 

Proof. We write f =  Gh and Io(f)=tllhl12. We must show that when the llh11* are 
bounded, the corresponding f run over a bounded equicontinuous set. Then proposi- 
tion 4.1 combined with Ascoli's theorem will show that If, is compact. 

First note that 

14.21 

The first L2 norm in (4.2) is with respect to the y,s variables. This inequality establishes 
the boundedness. 

The equicontinuity is a similar argument. We have by essentially the same calcu- 
lation 

If(x + h, t + k )  - f i x ,  t)l 

s { [ F ( x  + h, t + k, x + h, t + k )  - T(x + h, f + k, X, t ) ]  

- [T(x + h, t + k ,  X, r )  - T(x, r, X, t)l}!lh[!2. (4 .3)  

But we know that the covariance r is uniformly Holder continuous, by lemma 2.1, 
so the equicontinuity follows. 

We conclude this section with a restatement of the main results for the Gaussian 
process in a somewhat more elegant form. Define the set function Io in terms of the 
corresponding point function by 

&(A)= inf lo(f). 
/EA 

We consider a set A c CDO([O, L] X [O, TI). 

Theorem 4.3. (i) If A is open, then 

-Io(A)sliminf E ~ P ( E W  E A ) .  
E'O 

14.4) 

(4.5) 

(ii) If A is closed, then 

lim sup E*P(EW E A )  s -&A). 
F - 0  

(4 .6)  
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Proof. (i) Let f be an arbitrary element of the open set A. Then there exists a 6 > O  
such that {g E CDo: )lg -fll,  < 6) c A. But w E CDo with probability one, by proposition 
2.3. Thus 

P(IJw - f l l , < S ) ~ P ( w  EA).  (4.7) 

It follows from proposition 3.1 that 

liminf E ~ P ( E W  ~ A ) < - I o o ( f ) .  
E + o  

(4.8) 

Since f is arbitrary, this proves the first part of the theorem. 
(ii) Let 7 > 0. Define s = Io(A) - 7. The set 1; is compact, by proposition 4.2. 

The closed set A does not intersect the compact set I ; ,  so S = dist(A, I;)>O. It 
follows that 

P(E w E A) G P[dist(e w, 1;) a SI sexp[ - (1 / E ’ ) [ s  - 711 
G expi- (1/~~)[10(A>-2~11.  

Since 7 is arbitrary, this proves the second part. 

(4.9) 

5. Solutions of the nonlinear equation 

In this section we treat the nonlinear equation in its integrated form (1.13). We 
temporarily forget the probabilistic aspect of the problem and treat the solution of 
the nonlinear problem as a perturbation of the solution of the linear problem. The 
main result will be that the solution U of the nonlinear equation (1.13) is a continuous 
function of the solution w of the linear problem and of the initial condition u0. 

Define 

r = E W + g U O  and q = u - z .  (5.1) 

U = - G V ’ ( U ) + Z  or 4 = -GV‘(q  + z ) .  (5.2) 

The equation for the function U may also be stated in terms of 4 :  

It is obvious that once we have information about q we will also have corresponding 
information about U. 

We shall assume in the following that w and u0 are given continuous functions. 
We would like to show that 4 and hence U are also continuous. We can do this 
locally in time without any special problem. We work in the Banach space CD([O, L ]  x 
[0, TI) of functions on space-time satisfying the Dirichlet boundary conditions at 
x = 0 and x = L. The initial condition uo will be taken in the space CD([O, L])  of 
functions of space satisfying the Dirichlet boundary conditions. 

Proposition 5.1. There is a time T>O depending on lluollc0 and llwllm such that the 
equation (5.2) has a unique solution in CD([O, L] x [0, TI). 

Proof. Let B be the ball of radius a in this Banach space. Define a function F on B 
by 

(5.3) 
Since g:cD([o, L])  + CD([O, L] x [0, TI) has norm one, 4 + z = 4 + E W  + guo is always 

F ( q )  = -GV’(q + 2). 
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in the ball of radius a +EIIH’IJm+ilUollm. Furthermore the polynomial V’(u)  = A u 3 - p u  
is bounded on bounded sets. Finally, the operator G: CD([O, L ]  x [O, TI)  -* CD([O, TI)  
has norm bounded by T. It follows that for T sufficiently small, F maps B into 3. 
Furthermore the polynomial V’ is Lipshitz on bounded sets, so F is actually a 
contraction of B for sufficiently small T. It follows that F has a unique fixed point, 
and this is the required solution. 

Corollary 5.2. Let [0, 7‘*) be the maximum interval of time for which the equation 
(5.2) has a continuous solution. Then either T* = 03 or Ilu(t)ll..+ as t -+ T*. 

Proof. If T* <CO and lIu(r)llm remained bounded, then we could use the argument of 
proposition 5.1 to continue the solution beyond T* (Segal 1963). 

We now begin a series of results that will lead to the continuous dependence of 
U on iv and uO. The crucial step is an a priori estimate (proposition 5.4) that shows 
that 4 is L4 bounded. Marcus (1978) has given such an estimate for the case of a 
homogeneous polynomial. The following is an extension of his estimates. 

Lemma 5.3. If q is a solution of ( 5 . 2 ) ,  then 

where the inner product is that of L2([0 ,  L ]  x [0 ,  TI).  

Proof. The function 4 formally satisfies the differential equation obtained by subtract- 
ing (1.11) from (1 .5 ) .  However, since w is not smooth it is not immediately clear that 
the equation is satisfied in a rigorous sense. Thus we use an approximation to get a 
rigorous equation and then show that the bound is maintained as the approximating 
q,, approach the exact q. 

Let P,, be the projection onto the span of the first n eigenfunctions C#I~ of a2/dx2. 
Set 4,,(t) = P,q(t). Then q,,(t) is automatically in the domain of a2/ax2 for each t. 
Furthermore, it satisfies the equation 

(a lar  - a Z / a X 2 ) q , ( f )  = -P,,V’[u(t)].  ( 5 . 5 )  

Take the L2([0, L ] )  inner product with q,, ( t ) .  This gives 

4allqfl(t)t12/at + / / a q n ( t ) / a x / 1 2  = -(v’(u(r)), q f l ( t ) ) .  (5.6) 

The term J/aq, , ( t ) /axl12 is positive and finite. If we omit it the equality becomes an 
inequality. Integrate this inequality from 0 to T. We obtain 

. T  

Let n + 00. This gives 

This is the desired conclusion. 

Lemma 5.4. Let q be a solution of (5.2). Then either 

114114 ~ 0 1 1 ~ I l 4  or /jq//4 s ( L T ) ’ I ~ ( ~ o ~ / A ) ’ I ~  
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This contradicts lemma 5.3. 

The next task is to improve this bound to a uniform bound (lemma 5.8). We shall 
need some properties of the kernel g(x, y, t )  defined in (1.9), which gives the solution 
of the heat equation on the interval [0, L].  Let p(x, t )  be the fundamental solution 
of the heat equation on the whole real line. 

Lemma 5.5. The inequality Osg(x ,  y, t)Gp(x -y,  t )  is satisfied for all x and y in 
[0, L ]  and all t > 0. 

Proof. Let f 2 0 and 

and 

(5.10) 

(5.11) 

Clearly gf(x, t)-pf(x, t )  6 0 when x = 0 or x = L, since then the first term vanishes. 
Furthermore, gf(x, t )  = 0 for t = 0. But this difference satisfies the heat equation in 
the interior of the strip 0 < x < L, 0 < t, so by the parabolic maximum principle (Protter 
and Weinberger 1967) 

(5.12) 

throughout the strip. Now let f approach a point measure. This gives the inequality 
for the kernels. 

gf (x, t )  - Pf (x, t )  zz 0 

Lemma 5.6. Let p(x, t )  = ( 4 ~ t ) - " ~  exp[-x2/(4t)] be the fundamental solution of the 
heat equation. Then p is in L'(R x [0, 7-1) for every r < 3. 

dt. This is finite when r < 3. T 1 / 2 - r / 2  Proof. The L' norm is a multiple of jo t 

Proposition 5.7. Let G be the integral operator defined in (1.10). Let 1 6 r  <3 ,  
l < q s o o , a n d l < p s o o w i t h l / p =  l / r + l / q - 1 .  ThenGisboundedfromLq([O,L]x 
YO, 7-11 to LP([0 ,  LI x LO, 7-1). 
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fact that the kernels vanish when the time argument is negative. The above inequality 
may be rewritten 

/ U  I (1 I0,TI .P) * I f  I (5.14) 

where the * denotes convolution. The result then follows from Young's inequality. 
(This argument follows one in Stroock and Varadhan (1979).) 

Lemma 5.8. Let z = E W  +guo lie in a bounded set in CD([O, L ]  x[O, TI). Then the 
corresponding U satisfying (1.13) are bounded in CD([O, L ]  x [0, TI). 

Proof. Since z is bounded in CD([O, L ]  x [0, TI), it is also bounded in L4. By lemma 
5.4, q = U - 2  is bounded in L4. But then it follows that U is bounded in L4. Thus 
V' (  U )  is bounded in L4'3. 

Now apply proposition 5.7 with q = $, r = and p = i .  This shows that U is bounded 
in L6. It follows that V ' ( U )  is bounded in L2. 

Now apply proposition 5.7 again with q = 2, r = 2 ,  and p = 00. It follows that U is 
bounded in L". 

Theorem 5.9. The solution of (1.13) exists globally in time. 

Proof. This follows from lemma 5.8 and corollary 5 . 2 .  

Theorem 5.10. The solution U of (3.3) depends continuously (in the uniform norm) 
on z = E W  +uo. 

Proof. Consider a pair zl ,  z2 and the corresponding pair u1, u2.  Let ii = u1 - u2 and 
i = z I  - z2 .  Then the differences satisfy 

d =-G[V'(ul)-  V ' ( U ~ ) ] + Z .  (5.15) 

On the other hand, we have 

V'(U1) - V'(u2) = Eh, 

where h is a polynomial in u1 and u2. The point is that by lemma 5.8 we have an a 
priori uniform bound K on h. Thus for each t we may estimate 

The first two norms in this formula are uniform on [O, L].  It follows from Gronwall's 
inequality that we have an estimate 

Il~ll.. exp(KT)JlfI/,. (5.17) 

Here the norms are uniform on [0, L ]  x [0, TI. This proves the theorem. 

Remark. If z is in the space CD([O, L ]  x [0, TI) of continuous functions satisfying the 
Dirichlet boundary conditions at 0 and L, then so is U. Thus we will usually think of 
U = Y ( z )  where Y is a continuous map of this space into itself. Note that the inverse 
map Y- ' (u)  = z is also well defined and continuous. 
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If we fix uo we may also think of U as a continuous function of EW in CDo([O, L] x 
[0, TI), where the 0 reminds us of the zero initial conditions. In that case U = @,(Ew) = 
~ ( E W  +guo). In that case the inverse map is given by EW = @::(U) = P-'(u)-gu0 for 
U in CD,([O, LI x LO, TI). 

6. Ventse1'-Freidlin estimates for the nonlinear process 

We may now define the process of interest by taking w to be the Gaussian random 
function considered in 0 2. We know that w is in the space CDO([O, L]  X [0, TI) of 
functions satisfying Dirichlet boundary conditions in space and zero initial condition 
in time, with probability one. Consider an initial function uo in CD([O,L]). Set 
z = EW + guo. This random function is in CD([O, L] x [0, TI) and assumes the initial 
condition u0 with probability one. The process of interest is U = P(z), the solution 
of the nonlinear equation (5.2). This U is in CD,([O, L] x [0, TI), since it assumes the 
initial condition u0 with probability one. We may also regard U as a function 

U = @,(EW) = $ ( E W  +guo) (6.1) 
Ot EW. 

We define a functional I by 
In order to study this process we shall need certain functionals of the sample paths. 

I(U) =IO[@::(U)l. (6.2) 

In other words, I ( u )  = 10(&w), where U and EW are related by the integral equation 
(5.1), (5.2). The functional I is thus (at least formally) given by 

I(u) = #a /a t  - a 2 / a x 2 ) U  + v'(u)lJ;, 40) = uo, 

U (0) # uo. 
(6.3) 

= 00, 

We also define 

I ( A ) =  inf I(u). 
u e A  

Theorem 6.1. Let U be the random solution of (1.13). Then 
(i) for every open set A in CD,([O, L] x [0, TI) 

-I(A)sliminf e'logP'(uEA); 
E - 0  

(ii) for every closed set A in CD, ([0, L] X [0, TI) 

limsup E210gPE(u cA)=z-I(A). 
e -0 

(6.4) 

Proof. The map @, maps CDO([O, L] X [0, TI) onto CD,([O, L] X [0, TI). Furthermore 
U = @ , , J E W ) .  Hence 

(6.7) 
But if A is open or closed, then so is @;:(A). Hence by theorem 4.3 we may compute 
the probabilities in terms of 

Io[@;,'(A)l= I(A) (6.8) 

P'(u E A)  = P[EW E @&!(A)]. 

This completes the proof. 
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The preceding analysis reduces the problem to finding the infimum of a certain 
functional I. We now turn to some general properties of this functional. We show 
that a minimum is actually attained on non-empty closed sets. 

Proposition 6.2. The functional I is lower semi-continuous on CD,,([O, L ]  x [0, TI ) .  

Proof. This is because ICf)=Io[@,,’(f)]. Since is continuous and Io is lower 
semi-continuous (by proposition 4. l ) ,  it follows that I is lower semi-continuous. 

Proposition 6.3. The set Is = v: ICf) s s} is compact in CDu,([O, L ]  x [0, TI). 

Proof. The set Is is the image under Quo of the set I &  But I :  is compact, by proposition 
4.2. Furthermore Ow is continuous, by theorem 5.10. The image of a compact set 
under a continuous map is compact. 

Theorem 6.4. If A is a closed set in CD,,([0,L]x[O, TI) such that I ( A ) < x ,  then 
there is an f in A with I ( f )  = I ( A ) .  

Proof. Let s = I ( A )  + 1. Then A f l  I” is a non-empty compact set, by proposition 6.3. 
Since I is lower semi-continuous by proposition 6.2, it follows that its minimum is 
attained on this set. 

Corollary 6.5. Let fc  be the solution of (1.13) with E = 0. Let A be a closed set in 
CD,([O, L ]  x [0, L ] )  that does not contain f c .  Then I ( A )  > 0. 

Proof. If I ( A )  = 0, then by theorem 6.4 there is an f in A with I c f )  = 0. But then 
Io(@i:f) = 0, so @itf = 0. This shows that f is the unique solution of ( 1.13). so f = f c .  
Thus f c  is in A, which is a contradiction. 

Corollary 6.6. Under the same hypotheses, there is a k > 0 with 

P ( u  E A )  s exp(-k/E’)). 16.9) 

Thus the probability of a deviation from the deterministic path is exponentially small 
in the small E limit. 

Proof. Take 0 < k < I ( A )  and apply theorem 6.1. This says that E log P‘ ( U  E A )  s - k 
for E sufficiently small, and this is equivalent to (6.9). 

In the following we shall need to use the representation (6.3) of the action 
functional. Define U to be regular if au/at and a2u/ax2 are in CD([O, L ]  x [0, 7’1). It 
is clear that when U is regular the representation makes sense. We now wish to find 
conditions that ensure that U is regular and that arbitrary U may be approximated by 
regular U .  

Proposition 6.7. Assume that w is regular and that d2uo/dx2 is in CD([O, L]) ,  Then 
the corresponding solution U of (5.2) is also regular. 

Proof. Since w and guo are regular, so is z = E W  + guo. Since q = U - z, q = 0 at t = 0. 
The equation for q involves V’(q + z )  and this nonlinear operator satisfies the 
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hypotheses of lemma 3.1 of Segal (1963). Thus q is regular. Since U = q + z ,  we 
conclude that u is regular. 

Lemma 6.8. Assume that (alar  - a 2 / ~ x 2 )  w = h and that a2h/dx2 is in CD([O, L]X 
[0, TI). Then w is regular. 

Proof. Since w = Gh, where G is bounded and commutes with a 2 / a x 2 ,  it follows that 
a2w/ax2  is in CD([O, L ]  x [0, TI). But since w satisfies the parabolic equation, it follows 
that w is regular. 

Theorem 6.9. Assume that I(u) <CO and that the initial condition u0 is smooth. Then 
there is a sequence U ,  of regular functions such that U, + U uniformly and I(u,) + I(u). 

Proof. We have I ( u ) = I O ( ~ w )  for h in L2.  Let h, be a sequence of smooth 
functions that approach h in L2.  By lemmas 6.8 and 6.7 the corresponding w, and 
U, are regular. It is also clear that I(u,) + I(u). By proposition 5.7 w, + w uniformly. 
By theorem 5.10 U, + U uniformly, and this completes the proof. 

7. The equilibrium action 

In this section we study the equilibrium action defined by 

S ( U )  = i ( a ~ / a x ) ~ +  V ( U )  dx, 
L 

0 
(7.1) 

with Dirichlet boundary conditions on U at x = 0 and at x = L.  For fixed U ,  the 
differential of S at U may be represented by a vector in L2([0, L ] ) ,  namely 

$(U) = -a2u/ax2 + V‘(U). (7.2) 
This is defined only when U satisfies the Dirichlet boundary conditions. For fixed U 
the second differential of S at U is a quadratic form, represented in L2([0,  L ] )  by the 
operator 

s”(u) = -a2/ax2+ v”(u) (7.3) 
with Dirichlet boundary conditions. In this section we study the critical points of S, 
that is, the points U where S’(u)  = 0, and relate them to the topology of S. 

The equation S ’ ( U )  = 0 is Newton’s equation of motion for a particle with potential 
energy - V ( U ) .  With this interpretation x is the time variable, and the Dirichlet 
boundary conditions say that the particle returns to the origin at exactly time L. In 
this problem the force is V ’ ( U ) .  We may think of this as a spring with spring constant 
- V ’ ( U ) / U  = -2aV(u)/au2. The particular nonlinear force that we have chosen is such 
that the spring constant is 

(7.4) 

From this expression we see that the spring constant gets smaller as the spring is 
extended. This is thus what is called a soft spring or sublinear problem. It is this 
feature that is the key to the analysis. 

The theory of such sublinear problems is by now rather standard. There is a nice 
treatment in an article by Hempel (1971). He works with the hypothesis that -2V(u) 

-2av(u)/au2 = -V’ (u ) /u  = (p -Auz.). 
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is a concave function of u 2 .  This is the same as requiring that the spring constant 
-2aV(u)/au2 = - V ’ ( u ) / u  is a decreasing function of u 2 ,  and this is certainly true in 
our case. There is also a discussion in an article by Chafee and Infante (1974). They 
work with a slightly different hypothesis, namely, that [ -2  V(u)]’” is concave in U .  

In the following we will find it more convenient to use Hempel’s framework. In both 
treatments oscillation properties of the solutions play an important role. 

It should be mentioned that Hempel (1971) has also treated the corresponding 
problem in higher dimensions. For such problems oscillation properties are of little 
use, and so he instead uses topology in function space. In this way he is able to obtain 
existence but not uniqueness. There is also an article by Coffman (1975) which treats 
the relation between the topology and oscillation properties in the one-dimensional 
case. This article also discusses variational principles. 

In the following we present the main results. Since the proofs are scattered 
throughout the literature, we also give a brief outline of the proofs. In the stability 
result we use a technique of Laetsch (1975). 

Lemma 7.1. If U is a non-zero critical point of S,  then S ( u )  < 0. 

Proof. Define the quadratic functional 
L 

Q , ( w )  = lo S(aw/ax)’+(aV(u)/au2)w2 dx. 

Then 

Q l ( w )  = -a2w/ax2+2(aV(u)/au2)w.  

Notice that 

Hence if S ’ ( u )  = 0 then Q : ( u )  = 0, Q,(u)  = 0, and S ( u )  = - ( A / 4 ) l l ~ ~ 1 / ~ S  0, with equality 
only when U = 0. 

Lemma 7.2. If p ‘”L s T, then the only critical point of S is zero. 

Proof. Note that 

(7.11) 

is an expression that we can analyse explicity. The eigenvalues of -a2/ax2 are 
p, = n 2 r 2 / L Z .  Hence when ,U s p l ,  the quadratic form Oo(w) is positive. By (7.11) 
and (7.10) the functional S ( w )  is strictly positive except when w = 0. By lemma 7.1 
there are no other critical points. 
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Lemma 7.3. If p ‘12L > T, then there is a non-zero critical point O1 which is a positive 
function. 

Proof. When p > p1 the quadratic form Qo( w )  assumes negative values, in fact Qo( w )  = 
(p l -p) l lw)12<0 when w is an eigenfunction corresponding to the eigenvalue p l .  It 
follows that 

S(EW) = E 2[(p1 - p)llw 112 + ( ~ / 4 ) ~ 4 1 1 W 2 1 1 2 1  c 0 (7.12) 

for E sufficiently small. 
However, S is weakly lower semi-continuous on an appropriate Sobolev space 

(Coffman 1975), and hence its minimum is attained on some U. By taking absolute 
values we see that the minimum is attained on a u1 b o .  By (7.12) S(ul)<O and so 
u1 cannot be the zero solution. 

Lemma 7.4. (Hempel 1971) Let u be a solution of the differential equation a2u/ax2 = 
V’(u)  with the initial condition u(0)  = a. Let w be another solution with w ( 0 )  = a. 
Assume that aw/ax (0) b au/ax (0). Then w > U throughout any interval in which U L 0. 

Proof. We compute 

( w ’ u  - wu’)  = V ’ ( w ) u  - wV’(u) .  (7.13) 

Integrate. This gives 

w ’ ( x ) u ( x ) -  w ( x ) u ’ ( x ) ~  U W [ V ’ ( W ) / W  - V ’ ( U ) / U ]  dx. (7.14) 

Assume that there was an x in the interval with w ( x )  = u ( x ) .  Consider the first such 
x.  Up to this x, Oau < w  and so by convexity V ‘ ( u ) / u S  V ’ ( w ) / w .  Hence the 
integrand in (7.14) is positive and so w ’ ( x )  2 u ’ ( x ) .  Since w and u are distinct solutions 
we even have w ’ ( x )  > u ’ ( x ) .  But this would imply that w C u just before arriving at 
x, which is a contradiction. 

Lemma 7.5. If p112L > T, then the non-zero positive critical point is unique. 

Proof. Assume that there were two such critical points u and w. Without ’loss of 
generality we may assume that w ’ ( 0 )  > u’ (0)  > 0. By lemma 7.4 w(L)  > u(L)  = 0,  so 
w could not possibly satisfy the boundary condition at L.  

Theorem 7.6. If NT < p l ” L  s (N  + 1 ) ~  then S has precisely 2N + 1 critical points 
f u l ,  f u z ,  . . . ,*UN, 0. The function un has n half-periods. 

Proof. In order to prove existence, we apply lemma 7.3 to an interval of length L / n  
with 1 s n s N.  Since T C p ‘”L/n there is a non-zero positive solution. Piece this 
solution together with alternating plus and minus signs. The gives the non-zero solution 
U, in the interval of length L. 

For uniqueness, note that any non-zero critical point is a function that divides the 
interval into n half-periods of length L/n,  for some n. If n b N + 1, the p ‘12L/n s v, 
so there is no solution, by lemma 7.2. If 1 s n s N then the solution is of the form 
f u  where u is positive. By lemma 7.5 these are the only possibilities. 
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Theorem 7.7, Assume that *U1, f u 2 ,  , , . , f uN and 0 are critical points such that U, 
has n half-periods. Then S ( u J  < S(u2)  < . . . < S ( U , )  < 0. 

Proof, (Coffman 1975) Since by convexity 

V(w)- V(u)3aV(u2)/au2 (W2-U2), 

it follows that 

S ( W )  - S (U) 5 Q, ( w ) - Q, (U 1. 

(7.15) 

(7.16) 

Let U be a critical point of S ( U )  with n half-periods. Then S ’ ( U )  = 0 implies that 
Q l ( u )  = 0 (by 7.8) and so Q,(u)  = 0 (by 7.7). By the oscillation properties of one- 
dimensional linear differential operators Q,(w) > O  for any w with n + 1 half-periods. 
But then S ( w ) > S ( u ) ,  by (7.16). This proves the result except for the last inequality. 
But this follows from lemma 7.1. 

Theorem 7.8. (Chafee and Infante 1974, Laetsch 1975) Let N?r < F ’ ’ ~ L  s ( N +  1)m 
Let *U’, * u z , .  , . , * uN and U N + ’  = 0 be the 2N + 1 critical points of S. Then the 
second differential S”(U,), 1 6 n s N + 1 has precisely n - 1 strictly negative eigen- 
values. 

Proof. Let U = U, be the critical point with n - 1 interior zeros. Then 0 is the nth 
eigenvalue and U, is the n th eigenfunction of the operator 

Q:=-d2/dx2+ V’(U)/U (7.17) 

with Dirichlet boundary conditions. Furthermore let z be the derivative z = du/dx. 
Since U vanishes at the end points, so does d2u/dx2 = dz/dx. Since z has n interior 
zeros, 0 is the (n + 1)th eigenvalue and z is the (n + 1)th eigenfunction of 

LN= -d2/dX2 f V”(U) (7.18) 

with Neumann boundary conditions. We may also restrict z to a smaller interval 
whose end points are the first and last zeros. On this smaller interval z has n - 2  
interior zeros. Thus on this smaller interval 0 is the (n - 1)th eigenvalue and z the 
corresponding eigenfunction of 

LD = -d2/dx2 + V”(U) (7.19) 

with Dirichlet boundary conditions. 
The operator of interest for us is 

S ~ U )  = -a2/ax2+ VQ) (7.20) 

with Dirichlet boundary conditions on the entire interval. We have the quadratic 
form inequality 

L N S S ( U ) S L D .  (7.21) 

By a well known variational principle (Faris 1975) this implies that the (n + 1)th 
eigenvalue of S”(U) is strictly positive and the (n - 1)th eigenvalue of S”(U) is strictly 
negative. It remains to locate the nth eigenvalue. 
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We use the fact that V’(u ) /u  is an increasing function of u2 to conclude that 

QlsS”(u) .  (7.22) 

V’(u) /u  s V”(u). Thus 

It follows that the nth eigenvalue of S“(u) is strictly positive. 
The only remaining case is when u = 0. In that case 

S”(0) = -a2/ax2 - p (7.23) 

has precisely N strictly negative eigenvalues, namely the n2.rr2/L2 - p with 1 s n s N. 

8. The gradient flow 

In this section we wish to consider the flow generated by the gradient S’ of the 
equilibrium action S given by (1.3). The critical points of S are the stationary points 
of the flow. We wish to show that every initial condition leads to a critical point, and 
to describe the initial conditions that lead to the absolute minima. 

The problem of showing that every initial condition leads to a critical point 
ultimately reduces to a compactness argument. This may be carried out in the 
framework of the Palais-Smale theory (Berger 1977) or using results of Hale on 
dynamical systems (Chafee and Infante 1974, Henry 1981). We briefly indicate how 
the Palais-Smale theory applies. 

Let H be the space L2([0,  L ] )  and let H’ be the Sobolev space which is the domain 
of a/ax with Dirichlet boundary conditions. Let H-’ be the space of distributions 
dual to H’, so that we have H’ c H c H-’. 

Lemma 8.1. (Palais-Smale compactness condition) Assume that U,, is a sequence of 
elements of H’ such that S ( u , ) s c  for some constant c and such that S’(u,)+O in 
H-’. Then there is a subsequence um with um + u in H’, and S‘(u)  = 0. 

Proof. We have 

s’(u)  = -a2u/ax2+ v‘(u) .  (8.1) 
The linear operator -a2/ax2 is bicontinuous from H’ to H-’, and the map u + V‘(u)  
is even compact from H’ to H-’. Since S(u,)  S c, the U,, are bounded in H’. Hence 
there is a weakly convergent subsequence that converges to some u in H’. This in 
turn has a subsequence um such that V‘(um)+ V’(u)  strongly in H-’. But since 
S’(um) + 0 in H-’, -a2um/ax2 + - a2u/ax2 in H-’, and so um + U in H’. Since S’(um) + 
S’(u)  in H-’, we must have S’(u)  = 0. 

It is not difficult to show that the gradient flow equation au/at = -S‘(u) has solutions 
that remain in H’. We now show that every orbit leads to a critical point in H’. 

Proposition. Let u ( t )  be an orbit of the gradient flow. Then there is a critical point 
u in H’ such that u ( t )  + u in H’ as t + 00. 

Proof. We have 
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This shows that S [ u ( t ) ]  is decreasing. Since it is also bounded below, dS[u(t)]/dt+ 0 
as t+m.  It follows from (8.2) that S’ [u( t ) ]+O in H and hence in H-’. Lemma 8.1 
now implies that the set of H’ limit points of u ( t )  is non-empty and consists of critical 
points. 

We now wish to show that this set contains only one critical point. We know that 
there are only finitely many critical points. If the orbit had more than one of them 
as a limit point, then the orbit would have to pass in a region bounded away from 
the critical points infinitely often. But then lemma 8.1 would produce yet another 
critical point in this region, which is a contradiction. This finishes the proof. 

The rest of this section is devoted to a discussion of the initial conditions that lead 
to the absolute minima of S under the gradient flow. The point of interest is that we 
want to leave the Sobolev space and look at initial conditions that are only known to 
be continuous functions. On such initial conditions S will usually assume the value 
+CO. This is a nuisance, but it is forced on us by the fact that the equilibrium probability 
of the Sobolev space is zero. We shall discuss this point further in 5 10. 

We look at the gradient system with an initial condition uo in the space CD([O, L ] ) .  
We know that the solutions are bounded. We wish to show that for fixed t the map 
uo-+u( r )  is continuous from C,([O,L]) to the Sobolev space H’. We shall in fact 
show more, namely, that it is continuous from the Hilbert space H = L2([0, L] )  to H’. 

Lemma 8.3. For t > O  the solution u ( t )  in H’ is continuous in the initial condition 
uo in H. 

Proof. First we show that the evolution is continuous from H to H. If Eo is the 
change in the initial condition and i i( t)  is the change in the solution at time t, then 

k = @io - G( Eh), (8.3) 

where Ihl is bounded by some constant c. Since 

(8.4) 

(8.5) 

It follows from Gronwall’s inequality that 

l l~( t ) l l  l l ~ o l l  exp(ct). (8.6) 

This concludes the proof. 

Now we use this to show that the evolution is continuous from H to H I .  The H’ 
norm is the norm llfllt = I/C3f/C3~11~+ l~I/ ’, Thus we apply d/dx to equation (8.3) and use 
the operator estimate 

lla/ax exp[(t -s)a2/ax2]11 s ( t  - I ”  (8.7) 

This estimate follows from the spectral theorem applied to the self-adjoint operator 
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-aL/ax' = (a/ax)*(a/ax). It follows that 

(8.8) 

Insert (8.6) in the integral in (8.8). This gives the estimates for llzil l l  in terms of Ilfioll, 
valid for fixed t > 0. The proof is finished. 

If U is a critical point of S, we define the basin of attraction of U to be the set of 
all initial conditions uo such that the orbit u ( t )  starting at uo approaches U as t + CO, 

Theorem 8.4. The basins of attraction of the absolute minima f u l  are open sets in 
the space CD([O, L ] )  of continuous functions. 

Proof. Let N be a Sobolev neighbourhood of u1 contained in the basin of attraction 
of ul. This exists because u1 is a stable minimum, by theorem 7.8. Let uo be an 
arbitrary element of the basin of attraction of u1. The solution u( t )  starting at uo is 
eventually in N for sufficiently large t. By lemma 8.3, if o0 is uniformly close to uo, 
then the corresponding solution u ( t )  is in N. Hence u ( t ) +  u1 as t + CO. It follows that 
uo is also in the basin of attraction of ul .  This proves that the basin of attraction of 
u1 is open in the uniform norm. The proof for -ul is the same. 

9. The lower bound for the probability of tunnelling 

In this section we obtain a lower bound for the probability of tunnelling. This follows 
from the first Ventse1'-Freidlin estimate and an upper bound on the space-time action 
Z(A). The upper bound may be obtained by inserting a trial function. The main 
contribution comes from the change A S  of the space equilibrium action during a path 
up the gradient of S. Thus this uphill path is a mechanism for tunnelling. We shall 
see in the next section that there is no easier mechanism. 

The technique is based on the obvious estimate 

Z(A) s Z ( u )  (9.1) 
for U in A. We need only choose U carefully in order to get the required upper bound. 
Throughout this section we make the assumption that the parameter p > .rrz/Lz, so 
that there is a non-trivial critical point u1 with u1> 0 in the open interval (0, L )  and 
with S(ul) < 0. 

Let uo be in an open uniform neighbourhood N of -ul and let Y be an open 
uniform neighbourhood of u1. We are interested in the transition event 

A = {U E CD-: U (0) = uo and U (T) E Y } .  (9.2) 
Theorem 9.1. Let N be in the basin of attraction of -u l .  Then for all S > 0, there is 
a T < CO such that 

I ( A )  2AS + S. (9.3) 

The proof consists of the construction of the appropriate trial function that starts 
at uo in N at time 0 and is in Y at time T. The time interval [0, TI is divided into 
five parts: (i) descent to near -ul; (ii) transition near -u l ;  (iii) ascent to near uq; (iv) 
transition near u2;  (v) descent to near ul. The main contribution will come from part 
(iii), the ascent. We shall show that the other contributions are small. 
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We begin with a lemma that will be used to estimate the transitions in stages (ii) 
and (iv). The idea is to construct a trial function by linear interpolation. 

Lemma 9.2. Let u ( t ) = , u ( a ) ( l - f / ~ ) + u ( b ) t / 7  be the linear path from u ( a )  to u ( b )  
in time 7. Assume that u(a )  and u ( b )  are uniformly bounded and have S’[u(a)]<m 
and S ’ [ u ( b ) ]  < CO. Then there exists a constant c < CO and a 7 with 0 < T <CO such that 
the corresponding u satisfies I ( u )  c 2cllu(a) - U@)//. 

Proof. We have 

Since 
au( t ) /a t= [ u ( b ) - u ( a ) ] / ~ ,  

the first contribution is Ilu(b) - u(a)112/7. 

(9.41 

(9.5) 

The other term may be estimated by using 

S’[  u (t)] = (1 - t / T ) S ’ [  u (a)] + ( t / 7 )S f [  u (b)] + p, (9.6) 

where p is a bounded function. It follows that /IS‘[u(t)]lJ s c for all t between 0 and 
T. The total contribution to the action is thus 

~ ( u ) s l l u ( b ) -  u(a)112/T+c2r  (9.7) 

Take T = Ilu(b) - u(a)ll/c. This gives the result. 

Proof of theorem 9.1. 
We construct the five paths separately and then piece them together into one large path. 

The first path is constructed by starting at uo and following the gradient flow until 
it is very close to -u l .  For large t the gradient S ’ [ u ( t ) ]  stays bounded, and the 
difference between u ( t )  and -u l  may be made arbitrarily small in Sobolev norm. The 
contribution of this path to the action is zero. 

The fifth path is constructed by starting at uo near u2 and following the gradient 
flow until it gets near to +ul.  Since u2 is a saddle point, it is certainly possible to find 
starting points uo close to u2 in the Sobolev norm on which S is strictly smaller than 
S(u2) .  Such a starting point can lead only to u1 or - u l .  By symmetry there must be 
points that lead to u1 and also points that lead to -ul. Since the eigenvectors of 
S”(u2)  are in H 2 ,  we may even take this starting point uo close to u2 in the H 2  norm. 
This gives a bound on S’(uo). The contribution of this path to the action is also zero. 

The third path is constructed in the same way as the fifth path, except that is then 
reversed and goes up the gradient from near -ul to near u2.  Thus it makes a sizable 
contribution to the action. This contribution is bounded by 

t JoTlldu(r)/dt + S’[u(t)]l12dt 

T T 

= 2 Jo IIS’[u(t)ll12 dt = 2 I (S ’ [u( t ) ] ,  du(t)/dt) dt 
0 

= 2{S[u  (T)] - S [ U  (O)]} s 2AS. 

The fourth path is constructed by linear interpolation, as in lemma 9.2. The initial 
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data for the third and fifth paths may be taken near enough to u2 so that the contribution 
of the fourth path is less than &/2. This may require rather long time intervals for 
the third and fifth paths. 

The second path is also constructed by linear interpolation. The times needed for 
the first and third paths may be taken so long that the final points near -ul are very 
close. The contribution from this second path is then also less than &/2. 

The total contribution to the action is thus bounded by 0 + &/2 + 2AS + S/2 + 0 = 
2AS + S. 

10. The upper bound for the probability of tunnelling 

In this section we obtain the upper bound for the probability of tunnelling. This 
follows from the second Ventse1’-Friedlin estimate and a lower bound on the space- 
time action I @ ) .  This lower bound is more difficult since we need information on the 
value of the functional I(u) for all possible trial functions U in A. The conclusion is 
nevertheless that no trial function gives an easier mechanism for tunnelling than going 
up the gradient. The change AS in equilibrium action is indeed an obstacle to 
tunnelling. 

Let 
A = { ~ ~ C D ~ u ( . , 0 ) = ~ g ( . ) a n d u ( . , T ) c P ) ,  (10.1) 

where uo is in a open uniform neighbourhood N of -u1 and Y is an open uniform 
neighbourhood of ul. We choose Y small enough so that u in Y implies that U (L /2 )  > 0 
is bounded away from zero. 

Let K be a compact set in the space CD([O,L]). We will insist that our initial 
condition uo belong to the set K. In order to get an interesting result the equilibrium 
probability of K should be strictly positive. This is not difficult to arrange by taking 
K to be a closed and bounded set of functions satisfying a uniform Holder condition. 

Theorem 10.1. For all 5 > 0 there is a neighbourhood N of -ul such that if uo is in 
N n K, then 

(10.2) 

The proof will be given under more restrictive assumptions, and then these assumptions 
will be relaxed. The heart of the proof is the topological argument in the following 
lemma. 

2AS - 5 s I(A). 

Lemma 10.2 Let uo = -ul and assume that U is regular. Then 

for all U in A. 
2AS s I ( u )  

Proof. If U is regular, then for 0 s T’ s T we may write 

I(u) = $ Ilau/at + S’(~)11~ d t  
T 

Ilau/at + S’(u)11* dt b f 

= f  jo Ilau/at-S’(u)112 dt+2{S[u(Tf)]-S[u(0)]} 

0 IoT, 
T‘ 

a2{S[u(Tf)]-S[u(0)]}. 

(10.3) 

(10.4) 
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Since u (L/2,0) = u0(L/2) < 0 and u (L/2, T )  > 0, we must have U (L/2, T‘) = 0 for 
some T’. However, for such a function u ( a ,  T’) we may apply the variational charac- 
terisation of the zero-node solutions (lemmas 7.3 and 7.5) to each interval [0, L/2] 
and [L/2, L ]  to conclude that S[u(T’)]aS(u2). Thus 

I ( U ) ~ ~ [ S ( U ~ ) - S ( U O ) ] =  2AS. (10.5) 

Lemma 10.3. The theorem is true when uo = - u l .  

Proof. Let u in A be such that I ( u )  = I (A) .  By theorem 6.9 we may choose a sequence 
of regular U, such that U,, + u uniformly and I (u , )  + I ( u ) .  Thus if n is sufficiently 
large, then u,,(L/2, T )  > 0 and so the argument of the lemma applies to show that 

2AS s I(u,). (10.6) 

But n may be taken so large that also 

2AS d I(u,) I(u) + C = I (A)  + 5. (10.7) 

This is the estimate of the theorem. 

In the following it will be convenient to introduce a somewhat different action 

(10.8) 

functional. Define 

I&) = l o [ z  - gz(O)]. 

This is formally 

i&) = & / a t  - a2/13x2)zl12 (10.9) 

with Dirichlet boundary conditions at x = 0, L, but no boundary conditions at t = 0, T. 
Similarly, define 

(10.10) [(U) = io[w-l(u)] = I&), 

i(u) = $ll(a/at - a 2 / a x 2 ) u  + V’(u)1I2 

where u = “(2) is the solution of the nonlinear equation u = -GV’(u)+z. This is 
formally 

(10.1 1) 

with Dirichlet boundary conditions at x = 0, L, but no boundary conditions at t = 0, T. 
The relation between f and the previous I is the obvious one 

i(u) = I(u) when u ( 0 )  = uo. (10.12) 

This is because f(u) = fo(z) = Io[z -gz(O)] = I& -guo)  = 10(ew)  = I(u), where u = 

The functional f has the nice property of being related to Io in a way that is 
independent of the initial condition. However, the price one pays for this is a certain 
loss of compactness. Thus we need to assume compactness of the initial conditions. 

-GV’(u) + z = -GV’(u) + E W  + guo. 

Proposition 10.4. Let K be a compact set in CD([O,L]). Then the set {U E 
CD([O, L] x [0, TI): f(u) s s and u ( 0 )  E K }  is compact. 

Proof. This set is the image under 9 of the set { z  E CD([O, L] x [0, T ] : z  = E W  + guo, 
I O ( E W )  s and uo E K}. This set is compact, by proposition 4.2. Since 9 is continuous, 
the image is also compact. 
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It is also true that f is lower semi-continuous, since it inherits this property from 
fo and eventually from Io. 

The following is the fundamental result that lets us prove the theorem for typical 
initial conditions. We indicate the dependence of the tunnelling event on the initial 
condition by writing it as A(uo). 

Theorem 10.5. Let K be a compact set in &(CO, L]) .  Then I[A(uo)] is lower semi- 
continuous in u0, in the uniform norm, as u0 ranges over the compact set K.  Here I 
is defined by (6.2).  

Proof. By the above discussion it is enough to show that f[A(uO)] is lower semi- 
continuous in u0. In other words, we must show that for every 5>0 there is a 
neighbourhood N of uo such that if U is in N n K ,  then 

i[A(u,)]-5 d [ A ( U ) ] .  (10.13) 

Define 

A ( N , n K ) = ( u :  uoEN,nK and u ( T ) E  P} (10.14) 

where N, is the closed S ball about uo., We know by compactness and lower semi- 
continuity that there is a U, in A(Ns  n K )  such that 

I(u,) = ~ [ A ( N ,  n K ) ] .  

We also know by compactness that there is a subsequence u8 -f u for some U .  Clearly 
u is in A(uo). By lower semi-continuity, 

!(U) d ( U 8 )  + 5 
for S sufficiently small and in the subsequence. In particular 

f[A(uo>] < f(u) a f ( u , )  + 5 = f [ A ( N ,  n K)]+ 5 S f [A(v) ]+C 
for all U in Ns nK. 

(10.15) 

Proof of Theorem 10.1. By lemma 10.3 the theorem is true if we start at - U I .  Thus 
for every 4' > 0 

I [ A ( - ~ l ) ] a 2 A S - l / 2 .  (1 0.16) 

However, by theorem 10.5, there is a neighbourhood N of -u1 so that for U in N n K ,  

I [ A ( u ) ] ~ I [ A ( - u * ) ] - 5 / 2 .  (10.17) 

Thus for such U 

I[A(u)] 3 2AS - 5. (10.18) 

Remark 1. One could also base the proof of the topological lemma 10.2 on the 
concept of basin of attraction. If the path from -ul to u1 remained below S ( U Z ) ,  then 
every u(r)  on the path would be attracted either to -ul or ul. This would divide the 
time interval [0, TI into two disjoint open non-empty sets, which would contradict 
its connectedness. Related minimax arguments have been applied to a variety of 
situations by Ambrosetti and Rabinowitz (1973). 
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Remark 2. It is important in the above results that the initial uo need only be near 
the minimum of the action in the uniform norm. We can appreciate the reason for 
this by returning to the equilibrium measure given formally by (1.1). The measure 
may be written 

where dpO(u)  is the measure whose formal density is given by 

dpo(u)  = exp( joL ( d u / & ~ ) ~  dx ) d"u. 

However, this is simply a Gaussian process with covariance operator ( E  2 / 2 )  (a2/dx2)- *. 
Thus it is well defined and its properties are easy to compute. 

This shows that the equilibrium measure (the invariant measure of the process) is 
absolutely continuous with respect to this Gaussian measure. It is known that this 
Gaussian process (the Brownian bridge) has continuous, in fact Holder continuous, 
sample paths, with probability one. Thus uniform neighbourhoods will have strictly 
positive probability, and so our initial starting configurations can be regarded as 
representative of reasonable equilibrium configurations. 
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